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Abstract 

Oral cancer is a global health challenge with a difficult histopathological diagnosis. The accurate 

histopathological interpretation of oral cancer tissue samples remains difficult. However, early 

diagnosis is very challenging due to a lack of experienced pathologists and inter-observer 

variability in diagnosis. The application of artificial intelligence (deep learning algorithms) for oral 

cancer histology images is very promising for rapid diagnosis. However, it requires a quality 

annotated dataset to build AI models. We present ORCHID (ORal Cancer Histology Image 

Database), a specialized database generated to advance research in AI-based histology image 

analytics of oral cancer and precancer. The ORCHID database is an extensive multicenter 

collection of 300,000 image patches, encapsulating various oral cancer and precancer categories, 

such as oral submucous fibrosis (OSMF) and oral squamous cell carcinoma (OSCC). Additionally, 

it also contains grade-level sub-classifications for OSCC, such as well-differentiated (WD), 

moderately-differentiated (MD), and poorly-differentiated (PD). Furthermore, the database seeks 

to bolster the creation and validation of innovative artificial intelligence-based rapid diagnostics 

for OSMF and OSCC, along with subtypes.  
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Background and summary 

Oral squamous cell carcinoma (OSCC) is a global cancer burden with a substantial number of 

individuals diagnosed each year, primarily in Southeast Asian countries where tobacco and 

associated products are commonly used1,2. Similarly, oral submucous fibrosis (OSMF) is a chronic 

and progressive condition that primarily affects the oral cavity3,4. It is characterized by the 

deposition of fibrous tissue in the submucosal layer, leading to restricted mouth opening, difficulty 

swallowing, and altered oral function5. OSMF also predominantly affects individuals in Southeast 

Asian countries where betel quid chewing is prevalent. The condition is known to have a 

potentially malignant nature, increasing the risk of developing oral cancer. Early detection and 

intervention are crucial in managing OSCC as well as OSMF and preventing its progression to 

malignancy.  

The available diagnostic methods for OSMF and OSCC play a critical role in identifying 

and assessing these conditions. However, these methods have certain limitations that affect their 

accuracy and effectiveness. For OSMF, the diagnosis primarily relies on clinical examination and 

assessment of characteristic signs and symptoms6. The gold standard is a tissue biopsy and 

histopathology examination by a trained histopathologist. However, histopathological examination 

of the biopsy sample may not always provide a clear distinction between OSMF and early-stage 

OSCC, leading to diagnostic difficulties. In the case of OSCC, a combination of clinical 

examination, radiographic imaging, and biopsy is typically used for diagnosis. A clinical 

examination involves assessing the site, size, and appearance of the oral lesion. Radiographic 

imaging techniques such as computed tomography (CT) or magnetic resonance imaging (MRI) 

can help evaluate the extent of the tumor and identify possible metastasis7. Nevertheless, these 
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imaging techniques exhibit restricted specificity when it comes to distinguishing between benign 

and malignant lesions.  

Moreover, the lack of skilled histopathologists poses a significant obstacle, and the process 

of manual annotation further contributes to inter-observer discrepancies. Therefore, there is a need 

for further research and the development of more advanced diagnostic techniques that can improve 

the early detection and accurate diagnosis of these conditions, allowing for timely and appropriate 

management strategies to be implemented.  To facilitate analysis, preprocessing of H&E images 

is necessary, followed by appropriate segmentation for further analysis. Computer-based 

algorithms have been employed to segment H&E stained images, successfully automating the 

process of separating the epithelial layer from the sub-epithelial layer8. This enables proper 

classification of tissue architectural changes and the extraction of relevant features for machine 

learning. However, despite these advancements, the application of these tools to human tissue 

samples has not yielded definitive results due to a lack of comprehensive histopathology databases. 

To build deep learning algorithms, we need well-annotated H&E by expert 

histopathologists, but for oral cancer, we don’t have enough large datasets on H&E. The lack of a 

publicly accessible histology image database for oral diseases presents a formidable obstacle. 

These databases, along with digital pathology databases, play a vital role in advancing healthcare 

by facilitating the development of more precise AI-based diagnostic tools. They serve as valuable 

resources for training and refining AI models tailored specifically for healthcare applications. 

Several publicly available databases have been established, housing distinct image datasets for 

various medical conditions, thereby aiding in the training and enhancement of AI algorithms9,10. 

However, in the realm of oral cancer, the availability of image data is noticeably limited compared 

to other cancer types like breast, lung, and skin cancer. Existing histology image databases 
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primarily consist of tissue slide images related to OSCC, with none specifically including OSMF. 

Furthermore, there is a dearth of databases containing patch-level annotated images of OSCC. 

While certain research groups offer low-magnification image databases, these images fail to 

capture intricate nuclear features, making them unsuitable for training machine learning 

algorithms. 

While whole slide imaging (WSI) offers advantages in generating large amounts of data 

and capturing comprehensive tissue information, challenges such as high computational 

requirements, software restrictions, and costs hinder its widespread use11,12. Further, issues related 

to image quality and uniformity in WSI datasets further complicate the integration of AI-powered 

algorithms effectively. Moreover, the lack of publicly accessible histology image databases 

specifically dedicated to oral diseases poses a significant challenge13. There is also a conspicuous 

absence of high-magnification images that comprehensively represent other oral diseases. Notably, 

oral conditions like OSMF lack adequate representation in these databases.  

Addressing this gap necessitates that we present the ORCHID database for oral cancer, 

with specific emphasis on conditions like OSMF and OSCC. We believe the ORCHID database 

will aid the scientific community in building and harnessing AI technologies to enhance the 

accuracy and effectiveness of AI-based diagnostic tools, ultimately improving patient care and 

outcomes in the field of oral healthcare. 
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Methods 

Human ethical clearance  

Tissue slides were collected with the approval of an ethical committee from the participating 

hospitals and research institutions, (1) Jamia Millia Islamia, New Delhi, (2) Maulana Azad 

Institute of Dental Sciences, New Delhi; (3) Rajendra Institute of Medical Sciences, Jharkhand, 

(4) Banaras Hindu University, Banaras, and (5) All India Institute of Medical Sciences, New Delhi, 

India. The buccal mucosa tissue samples were collected for three classes, normal, OSMF, and 

OSCC, with grade-wise annotation from the pathologists at each hospital. Data collection for the 

study was conducted with the explicit consent of the patients involved, following a rigorous ethical 

review and approval process carried out by relevant committees. Informed consent was obtained 

from all participants, ensuring they were fully aware of the study's purpose, procedures, potential 

risks, and benefits. They were given the opportunity to ask questions and seek clarification before 

providing their consent to participate. Participants willingly agreed to the open publication of their 

data, understanding that their identities would be protected and their information anonymized. The 

manuscript includes specific references to ethical approval granted by different institutions, 

indicating their compliance with ethical guidelines and regulations. These references serve as a 

means of tracking and verifying the study's adherence to ethical standards. Here are some example 

proposal numbers from various institutions: (Proposal No.: 6(25/7/241/JMI/IEC/2021; Proposal 

No:. ECR/769/INST/JH/2015/RR-18/236; Proposal No.: F./18/81/MAIDS/Ethical 

Committee/2016/8099; Proposal No.: IEC-828/03.12.2021). These numbers uniquely identify the 

respective ethical approvals received.  

 

Haematoxylin and eosin staining (H&E) 
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Biopsy samples of normal, OSMF and OSCC tissues underwent H&E staining. The staining 

procedure was conducted either in-house or outsourced to different laboratories. To eliminate 

staining variations across different laboratories, the preparation of H&E slides involved five 

histopathology labs, each utilizing their own independently developed and optimized protocols for 

the staining process. Following staining, the samples were examined under a microscope by a 

skilled histopathologist to assess cellular morphology, and tissue architecture, and identify any 

distinctive features or abnormalities specific to each sample type. This evaluation by the 

histopathologist involved grading the tissue slides for OSCC and OSMF, as well as differentiating 

between normal and diseased tissue sections. Subsequently, the annotated and validated images 

were utilized for further analysis.  

 

Image acquisition 

Images were acquired using a 100X objective lens from Nikon and Leedz microimaging (LMI) 

bright field microscopy. Images were collected with the microscope's NIS elements and ToupView 

image software, respectively. During the capture of the images from each tissue section slide, white 

balance adjustments were made and the camera was adjusted. We collected approximately 100-

150 images per tissue slide, which were stored in PNG file format.  

 

Expert annotation and validation  

The data included in the ORCHID database underwent rigorous expert annotation and validation 

to ensure a high level of quality and accuracy. This assessment involved examining the clarity and 

detail of each image, ensuring that they were of a standard that allowed for accurate diagnosis and 

study. Images that were blurry or lacked sufficient detail were dismissed as they would not provide 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.14.23294094doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.14.23294094


 

8 
 

accurate or reliable information. Next, the experts evaluated the annotations that accompany the 

images. These annotations were scrutinized for consistency and accuracy, to ensure that they 

accurately represented the disease conditions depicted in the images. The process of labeling the 

slides was conducted manually by trained pathology experts. This involved a careful review of 

each slide to identify and label the specific disease conditions present. This procedure was crucial 

to ensure that the slides were correctly categorized. Furthermore, the slides that showed staining 

artifacts were also rejected. Staining artifacts can occur during the preparation of the slides and 

can alter the appearance of the tissue, potentially leading to misinterpretation or incorrect 

diagnosis. As such, only slides that were free from such errors and provided a clear and accurate 

representation of the oral pathology were included in the database. 

 

Stain normalization 

The handling of the samples at each hospital during the collection of the tissue samples led to 

staining problems that persisted even after following the established H&E staining protocol. To 

address and minimize the variations in staining appearance across different sites in the H&E 

images, a stain normalization method was implemented, specifically the Reinhard stain 

normalization technique14, as shown in Fig. 1c. This approach, described in the study, involves a 

series of steps to standardize the color properties of the images to a desired standard. The first step 

is scaling the input image to match the target image statistics. This involves adjusting the intensity 

values of the input image to align with the desired color distribution of the target image. The 

scaling ensures that the overall brightness and contrast of the input image are consistent with the 

target image. The next step involves transforming the image from the RGB color space to the LAB 

color space proposed by Ruderman. The LAB color space separates the image into three channels: 
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L (lightness), A (green-red color component), and B (blue-yellow color component). By 

performing the transformation, the image is represented in a color space that better captures the 

perceptual differences in human vision. Finally, Reinhard color normalization is applied to the 

LAB image. Reinhard color normalization adjusts the color properties of the image to align with 

a desired standard. It achieves this by equalizing the mean and standard deviation of the LAB 

channels across the image. 

If the LAB statistics for the input image are not provided, they are derived from the input 

image itself. This ensures that the normalization process is tailored to each individual image. 

Below is the equation for the same: 

𝐼! = 𝐼" ∗ $1 + 𝑘# ∗ (𝐿" − 𝜇$) + 𝑘% ∗ (𝑆" − 𝜇&).  (1) 

where:  

In  is the normalized image  

Io  is the original image  

k1  and k2  are constants that are chosen to optimize the appearance of the normalized image  

Lo  is the average brightness of the original image  

So is the average saturation of the original image  

μL  and μS  are the average brightness and saturation of a reference image. 

 

Patch generation  

After normalization, we generated image patches of size 300 by 300 pixels from 100X objective 

images. The patches were generated by left-to-right sequential cropping (overlapping 150 pixels) 

in the original images. At this point, we also discarded those patches that have more white space, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.14.23294094doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.14.23294094


 

10 
 

blurriness, and air bubbles reflecting image patches. The selected image patches were used as input 

data to build deep-learning models. 

 

Baseline model development and fine-tuning  

We performed benchmarking of ten deep-learning algorithms through pre-training and fine-tuning 

our models as shown in Fig. 2 (transfer learning). Because it had the highest accuracy among the 

ten pre-trained models, Inception V3 was chosen15. The InceptionV3 model was pre-trained on the 

ImageNet dataset, providing a strong initial set of learned features. The model's top layers were 

excluded to allow for customization. The model was then fine-tuned by setting all layers in the 

Inception V3 model as trainable. This process allows the model to adapt to the specific dataset 

being used in the study. A flattened layer was added to convert the output of the InceptionV3 

model into a 1-dimensional tensor. This was followed by a dense layer with 1024 units and a ReLU 

activation function, facilitating feature extraction and non-linear transformations. To mitigate 

overfitting, a dropout layer with a coefficient of 0.2 was introduced. Finally, a dense layer with 3 

units and a softmax activation function was employed to produce the output probabilities for the 

three classes in the classification task. The model was compiled using the RMSprop optimizer with 

a learning rate of 0.0000001 (or 10e-7) and trained with the categorical cross-entropy loss function. 

The model's performance was evaluated based on accuracy. For the specific task at hand, this 

model design combines transfer learning from Inception V3 with fine-tuning to produce an 

efficient image classification model. The same settings were used for both the classification 

models that are; the first model which classifies the image patched into normal, OSMF, and OSCC, 

and the second model which classifies the image patches into WD, MD, and PD grades of OSCC. 
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Data Records 

The ORCHID data used in the current study has been uploaded privately through the scientific 

data figshare platform. 

The data consists of digitized slides that were collected and stained for analysis. The digitization 

process involved capturing images using a 100X objective lens, as depicted in Fig. 1a. The dataset 

encompasses images from three distinct classes: normal, OSMF, and OSCC. Each class folder 

within the dataset contains image tiles generated at a 100X magnification level. The visual 

representation of these images is depicted in Fig. 1b, 1c, and 1d, which showcase the appearance 

and characteristics of the different classes. To provide a quantitative overview of the ORCHID 

training dataset (T.R.S.), Table 1 presents a summary of the number of images available in each 

of the five classes(folders), which are as follows, Normal-TRS-TR, OSMF-TRS-TR, WDOSCC-

TRS-TR, MDOSCC-TRS-TR, and PDOSCC-TRS-TR. Each class folder consists of subfolders 

representing different tissue slides collected from different patients. The naming of these folders 

start from the dataset name, ‘ORCHID’, followed by institute ID from where the sample has been 

collected and lastly the sample ID itself. All the image patches are stored inside these subfolders 

as per the tissue slide, they belong to. The naming of image patches is done in such a way, that 

each label represents, first the dataset name-‘ORCHID’, followed by institute ID, then sample ID, 

then image-ID(I) and lastly the patch-ID(P). The tabulated information helps to understand the 

distribution and proportion of images within each class, aiding in the analysis and utilization of 

the ORCHID dataset for the study or related research endeavors. 

These results summarize the ORCHID database we have created, which presents a significant 

advancement in the field of digital histopathology for oral cancer and pre-malignant oral 

conditions, with a specific focus on OSCC and pre-malignant oral conditions like OSMF. Our 
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primary objective was to develop a comprehensive high-resolution image database encompassing 

these conditions as well as normal healthy oral tissue. The availability of such diverse datasets is 

crucial for precisely classifying and differentiating between normal and diseased oral tissue. 

Additionally, these models will act as a standard for categorizing this dataset, and by making this 

information available, many researchers' efforts to develop machine learning models for disease 

detection will be aided.  

In summary, we have made an initial attempt to provide a comprehensive image database 

for two of the most prominent oral conditions, OSCC and OSMF. We believe that more such 

databases will be made publicly available in the near future. These comprehensive image databases 

will facilitate the development of accurate AI-based diagnostic tools for oral diseases, ultimately 

improving patient care and outcomes in the field of oral healthcare. In future, integration of 

databases comprising molecular markers, transcriptome, metabolome, and other biomarkers, 

combined with oral histological image through advanced AI-driven imaging techniques, holds 

great promise in improving diagnostic accuracy and precision. This potential has already been 

observed in the diagnosis of lung and breast cancers.16. 

 

Technical Validation 

The histology images in the ORCHID database involved a rigorous and systematic approach to 

ensure the reliability and accuracy of the dataset. To validate the dataset, a subset of images was 

randomly selected, which was then used as input for convolutional neural network (CNN) 

algorithms. Specifically, the chosen architecture for the CNN models was Inception V3, and the 

details of its configuration and implementation can be found in the methods section. The selection 

of the Inception V3 model was based on a comparison of training and validation accuracies among 
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ten state-of-the-art neural network models. It was found that the Inception V3 model performed 

the best among all the models, achieving the highest accuracy in classification tasks (Fig 4). The 

results demonstrated that the model successfully distinguished between the normal, OSMF, and 

OSCC classes, with a training accuracy of 98.54% and a testing accuracy of 97.15%, as illustrated 

in Fig. 3a. However, when classifying the three different grades of OSCC (WD, MD, and PD), the 

classification accuracy was slightly lower. The model achieved a training accuracy of 87.54% and 

an internal validation accuracy of 61.42%, as shown in Fig. 3b. These results indicate that the 

model had relatively higher difficulty accurately classifying the different grades of OSCC 

compared to the overall classification task. The technical validation process ensures that the 

ORCHID database is reliable and suitable for subsequent analysis and research. The performance 

of the Inception V3 model on the dataset demonstrates its capability to accurately classify normal, 

OSMF, and OSCC cases. Nevertheless, the performance in classifying the different grades of 

OSCC indicates the potential for improvement and calls for additional investigation and 

refinement. Furthermore, the need for a substantially larger image dataset is recognized, and efforts 

toward expanding the dataset are currently underway as part of ongoing work.  
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Fig. 1: Workflow, Image Analysis, and Stain Normalization. 

a) The workflow for preparing oral histopathology slides involves a series of steps, from the collection of tissue 

samples to slide preparation and staining.

b) Representative images captured at a magnification of 100X exhibit normal tissue, cases of OSMF, and cases 

of OSCC. These images were digitized using bright field microscopy, providing a visual depiction of the different 

stages involved in the preparation and staining of tissue slides. The scale bar is 10μm.

c) Stain normalization is performed to standardize the stain appearance in the images. The Reinhard stain 

normalization method is utilized for this purpose, ensuring consistent and comparable staining across the 

images. The scale bar is 10μm.

d) Image patches, measuring 300 by 300, are generated from the 100X images of normal tissue, OSMF cases, 

and OSCC cases. These patches serve as representative examples of specific regions within the larger images, 

offering focused insights into the characteristics of normal tissue as well as OSMF and OSCC conditions.
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Fig. 2: Flowchart describing the process to benchmark which pre-trained model to choose:

The flowchart serves as a visual representation of the process involved in selecting an appropriate 

pre-trained model for a specific task. It outlines the steps and criteria to consider when evaluating different 

models. Further, the flowchart provides a systematic approach to benchmarking various pre-trained models, 

taking into account factors such as model architecture, training data, performance metrics, and compatibility 

with the classification task at hand. 
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Fig. 2

List of selected pre-trained networks
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Fig. 3: Models performance evaluation metrics. 

a) Classification performance of the inceptionV3 model for normal, OSMF and OSCC.  
This model focus on assessing the effectiveness of classification algorithm Inception V3 (IV3) in 
distinguishing between different oral tissue conditions: Normal, OSMF, and OSCC. The metrics 
provide a quantitative measurement of the accuracy, prediction performance (confusion matrix) 
and loss for value representing the training loss and validation loss.

b) Classification performance of the inceptionV3 model for well-differentiated OSCC 
(WDOSCC), moderately-differentiated OSCC (MDOSCC), and poorly-differentiated OSCC 
(PDOSCC). This model specifically focus on the classification of different grades of OSCC: 
well-differentiated OSCC (WDOSCC), moderately-differentiated OSCC (MDOSCC), and 
poorly-differentiated OSCC (PDOSCC). The metrics measure the performance of classification 
algorithm, Inception V3 (IV3) in correctly classifying and differentiating between these different 
grades of OSCC. 
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WDOSCC - 90,648, MDOSCC - 96,240, PDOSCC - 99,968 MODEL-II  Training set = 2,86,856  Train(80%) = 229484, Test(20%) = 57372

Normal - 33437, OSMF - 77193, OSCC - 69821 MODEL-I  Training set = 1,80,451  Train(80%) = 144,361, Test(20%) = 36090

Fig. 3

a) Classification performance of the inceptionV3 model for normal, OSMF and OSCC. 

b) Classification performance of the inceptionV3 model for well-differentiated OSCC (WDOSCC), moderately-differentiated OSCC (MDOSCC), and 
poorly-differentiated OSCC (PDOSCC).
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Figure 4: Histogram showing accuracy comparison of ten pre-trained models benchmarked for the 

study. 

a) Accuracy of the selected ten pre-trained models on Normal, OSMF and OSCC image patches.

b) Accuracy of the selected ten pre-trained models on well-differentiated OSCC (WDOSCC), 

moderately-differentiated OSCC (MDOSCC), and poorly-differentiated OSCC (PDOSCC).

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.14.23294094doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.14.23294094


Fig 4  

a)
b)

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 22, 2023. ; https://doi.org/10.1101/2023.08.14.23294094doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.14.23294094

